Successful COVID-19 pivot: A satisficing teaching plan for distance learning

Richard Meredith
Regent’s University London, Inner Circle, Regent’s Park, London, NW1 4NS, UK.
mereditr@regents.ac.uk

Abstract

Purpose: This paper is an academic case study of one academic’s shift from in-person to online instruction as a result of the coronavirus pandemic.

Design/methodology/approach: The research framework combines Simon’s (1997) satisficing model of organisation decision-making with the Theory of Planned Behaviour (Ajzen, 1991). The framework is conceptually, rather than empirically, applied and takes the form of an autobiographical account of the decision-making process in the context of civic emergency policy, University students’ campus evacuation, and the situational and affective factors due to a switch from a proximate to a distance learning modality.

Research limitations/implications: This conceptual academic case study provides a tentative starting point for studying multiple individual academic’s lived experiences of this phenomenon in higher education institutions around the globe.

Findings: Under conditions of surprise, ambiguity and uncertainty, cognition and affect interacted sequentially and cyclically to arrive at lesson plan design decisions. The latent variables that determined cognition for information processing were moderated by affect and intent. Cognition provided targets for emotional responses by identifying health and change as objects of threat; generally a deviation from reason. But affect was also an input to the cognitive process of intent and behavioural action, determined by (a) attitude of actor; (b) social pressure on the actor; (c) actor belief in how much control they had; and (d) the ease of delivering the intent. The latter two factors were to a large extent controlled by the actors’ existing knowledge schemata.

Originality/value: The paper extends satisficing and planned behaviour theory to the change management and business continuity literature, with a call for empirical studies of the phenomenon.

Keywords: Satisficing; Theory of Planned Behaviour; Change Management for Continuity; Digital Pedagogy.

Profile:
Richard Meredith has wide-ranging professional expertise in management, organisational behaviour and human resources management. He is now an early career researcher with an academic interest in three topic specialisms: (a) Management and human resources theories explaining the role of firms in social welfare, through an employer lens and in a social constructionist perspective; (b) Social construction of Higher Education student engagement, through a tutor-as-coach perspective; and (c) Employer engagement in Higher Education research and development projects.

Word count: 2,293.
Introduction

The rational academic decision-making model for proximate pedagogy and lesson planning recycles tried and tested solutions. The decisions are based on a choice between several alternatives for action and involves a familiar, repetitive programmable process (Simon, 1997). When novel coronavirus recently decimated proximate directed learning time, academics were six weeks into a new Spring semester. New institutional major incident controls introduced fresh variables for individual academic decision making in the context of achieving business continuity for students. Under conditions of ambiguity and uncertainty, individual learning objectives were to be delivered but in a distance learning modality, with the learning activities and assessment diet adapted, subject to the invisible hand of internal politicking. Once one has received training on distance learning softwares, how might you adapt your proximate learning lesson plan into a satisficing distance learning version for digital natives in a period of likely information overload?

The purpose of this article is to apply a psychological conceptual framework to the autobiographical account of a Business School lecturer’s adaptations to learning activities. The goal of instruction, whether in person or digitally mediated, is learning and, from a learning science perspective, this may be defined as a change in a person’s knowledge caused by an experience (Bransford et al., 2000). There is, however, no definitive conceptualisation of the process of learning, that is, the mechanism by which a learning experience translates into a change in knowledge. In the situated context of a physical classroom, the primary learning design role includes setting suitable experiences, posing problems, setting boundaries, supporting students and facilitating the learning process. Experiential learning occurs for the students when carefully chosen experiences actively engage by posing questions, investigating, experimenting, being curious, solving problems, assuming responsibility, being creative and constructing meaning. If students are engaged intellectually, emotionally and socially, involvement should produce a perception that the learning task is authentic.

Conceptual Framework

This article adopts the normative stance that Higher Education Institutions’ (HEI) academic staffs’ goal for lesson planning is learning value maximisation (Jensen, 2001). Thus, the academic will think deliberately about lesson objectives, activities that will meet these objectives, the sequence of those activities, the materials needed, how long each activity might take and how students should be grouped. A holistic reflection of links between one activity and the next, the relationship between the current session and any past or future session, and the correlation between learning activities, assessment practices, emotion as a crucial aspect of learner motivation and self-directedness. As the academic has considered these connections and can make the connections explicit to learners, the lesson should be more meaningful to them. Existing HE studies are concerned with structural questions of lesson planning (Tyler, 2013) where the cognitive process is about ends and means, though it has long been argued that humans are not capable of such objective rationality due to the limitations in mental and physical capabilities. Therefore, the two theories from psychology about affect and intent in decision-making processes are selected for central concern in this paper (Figure 1), given the highly emotionally charged context and good enough situational imperatives of converting a lesson plan from proximate to distant learning modality overnight.
The application of the Theory of Planned Behaviour (Ajzen, 1991) to the context and situation of the 2020 COVID-19 civil emergency in mid-semester helps explain intention through the relationships between the academic, pressures, control and attitudes towards the intention to reformat the lesson plan from a proximate seminar to a distance learning modality in one week. The behavioural match to intention is then explained by the academic’s strife to be satisficing, meaning choosing options for learning activities that are good enough to satisfy a given need instead of actually evaluating all possible options in order to choose the objectively best one, as functionalist decision-making theories (like Thompson, 2003).

Design
The research design of the study consisted of the following steps:
(a) writing the autobiographical narrative;
(b) analysing the autobiographical narrative, drawing the essential themes from it;
(c) reflecting on these themes, and more specifically the ‘reality’ of events and perceptions expressed in the autobiographical narrative that contributed to these themes; and
(d) documenting the research literature on each theme to gain a greater insight into each theme and determine what experiences can contribute to this body of literature.

Schema: Converting a module from proximate to distance learning mid-semester
In the virtual classroom, the context for facilitating interactive authentic experiential learning tasks and assessments requires a digital alternative for physical paper handouts, use of newsprints and whiteboards, discursive peer groupwork, examinations, student presentations and so forth. Decisions are grounded in biased assumptions about the digital competence and technology environment of those who attend the new on-line classroom (Bearne et al., 2007). Participants were first year undergraduate students from all time zones (Figure 2) enrolled in an introductory people and organisation introductory module that started in September 2019 and lasts for 24 weeks (number of students n=254).
Figure 2: Proxy assumption about time zones of participants.
(Source: Author, using Google Maps)

The basic course material included one-hour face-to-face lectures with 120 students per cohort, and two-hour face-to-face seminars with 25 students per cohort. Assessment is normally in three parts, a group presentation and individual reflection on the group task, weighted 50 percent of Total Module Mark in semester one; and the balancing 50 percent based on an individual case study essay at the end of semester two. In week 6 of the second semester, learners mainly returned to their home country. They were prompted to join webinars for lectures and seminars at the same Greenwich Mean Time, day and duration, according to their semester timetable. Provision for time zone inconvenience was addressed by recording sessions including chat dialogue and by creating discussion fora on the Virtual Learning Environment (VLE). The lesson plan adaptation for a distance learning environment is shown in the Appendix.

Findings

Under conditions of surprise, ambiguity and uncertainty, cognition and affect interacted sequentially and cyclically to arrive at lesson plan design decisions. The latent variables that determined cognition for information processing were moderated by affect and intent. Cognition provided targets for emotional responses by identifying health and changes as objects of threat; generally a deviation from reason. But affect was also an input to the cognitive process of intent and behavioural action, determined by (a) attitude of actor; (b) social pressure on the actor; (c) actor belief in how much control they had; and (d) the ease of delivering the intent. The latter two factors were to a large extent controlled by the actor’s existing knowledge schemata.

Conclusions

Migrating lectures and even faculty-student interaction online is not that technically challenging as most Virtual Learning Environments (VLE) provide for virtual collaboration and interactive
mechanisms, including discussion groups and blog-style formats. The challenge is the lesson planning under the situation of informational uncertainty and cognitively affected by an emotional context. This paper extends satisficing and theory of planned behaviour to the change management and business continuity literature, with a call for empirical studies of the phenomenon.

References

Appendix: Generic Seminar Lesson Plan

<table>
<thead>
<tr>
<th>SEMINAR LESSON PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Module:</td>
</tr>
<tr>
<td>Year: 2020/21</td>
</tr>
</tbody>
</table>

AIMS: As specified in the Module Guide

OUTCOMES: As specified in the Programme Specification and Module Guide

PREVIOUS KNOWLEDGE ASSUMED:
As specified in the Module Guide and Student Charter.

MATERIALS AND EQUIPMENT REQUIRED:

Student:
(a) e-copy of link to Blackboard Collaborate URL.
(b) smart device (phone/tablet/laptop/pc) with good WIFI access.
(c) if phone or tablet smart device to be used, before session download Blackboard App and Padlet App.
(d) If PC, Google Chrome or Firefox browser.

Lecturer:
(a) PC in lecture/seminar room (webcam not essential) or smart device as above.
(b) Preloaded Blackboard Collaborate Ultra session scheduled to start 10 minutes to the hour of the
scheduled seminar session until 10 minutes before the end of the session.

(c) Blackboard bulk email message to seminar students with e-copy of link to Blackboard Collaborate URL for webinar room taken by opening the relevant session AND a word document with the learning activity instructions.

(d) Create Padlet for the seminar in advance. Click on relevant button in centre of Blackboard; used username@regents.ac.uk as username and your single sign in as the password. Make a padlet button.
Save. Then copy QR code.

(e) Save then copy QR code to a blank slide in your slide deck at the point you want an activity to take place.

(f) Arrive at seminar room 10 minutes before start. Load slides into collaborate room

(g) Click on slides and press “share now” button at bottom.

BRIEF SUMMARY OF CONTENT:
Design-based content to deliver the lesson learning objectives through guided on-line and remote experiential learning activities.

ASSESSMENT OF STUDENT LEARNING:
(a) Understanding check – of terms conceptually (low)
(b) Example of issues in personal case studies - Application (mid)
(c) Critical reasoning of theories - Evaluate (high).

STRUCTURE OF LESSON

<table>
<thead>
<tr>
<th>Time</th>
<th>Tutor activity</th>
<th>Student Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10m</td>
<td>Load slides including QR code. Check audio (and video) is working. Press start recording.</td>
<td>Login using webinar URL sent in advance by tutor with learning activity word document.</td>
</tr>
<tr>
<td>1m</td>
<td>Welcome – check everyone can see and here. Do a message</td>
<td>Respond with confirmation they can see slides and at least hear the lecturer. Remember that all messages are also recorded so these interactions and logins to session count as attendance for SEAtS.</td>
</tr>
<tr>
<td>5m</td>
<td>Proceed as in proximate seminar but use the facilities to highlight what you are talking about on screen like you do with a pointer.</td>
<td>Ask questions via messaging system. Tutor will get an alert on their screen.</td>
</tr>
<tr>
<td>??m</td>
<td>Learning activity 1. Introduce the activity but ask students to open the word document you issued in advance with the webinar URL. They will work on these documents on their tablet/pc/phone.</td>
<td>Undertake the activity. Post responses into the word document.</td>
</tr>
<tr>
<td>+15m</td>
<td>Wrap up activity 1 and ask them to save their word document for the time being.</td>
<td>Save word document.</td>
</tr>
<tr>
<td>+30m etc</td>
<td>Learning activity 2. Introduce the activity. This one may involve the word document again or might involve direct activity on Padlet. The student accesses the padlet you created by holding their phone camera to the QA code you reveal in the slides.</td>
<td>Scan QR code and do whatever activity is requested (e.g. type text, load a picture, upload the word document or another document).</td>
</tr>
</tbody>
</table>

EVALUATION OF LESSON

Check Padlet for entries from each participating student to establish learning gain. Feedback individually or as appropriate.